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Abstract: Infinite order differential equations have come to play an increasingly signif-

icant role in theoretical physics. Field theories with infinitely many derivatives are ubiq-

uitous in string field theory and have attracted interest recently also from cosmologists.

Crucial to any application is a firm understanding of the mathematical structure of infinite

order partial differential equations. In our previous work we developed a formalism to

study the initial value problem for linear infinite order equations with constant coefficients.

Our approach relied on the use of a contour integral representation for the functions under

consideration. In many applications, including the study of cosmological perturbations in

nonlocal inflation, one must solve linearized partial differential equations about some time-

dependent background. This typically leads to variable coefficient equations, in which case

the contour integral methods employed previously become inappropriate. In this paper we

develop the theory of a particular class of linear infinite order partial differential equations

with variable coefficients. Our formalism is particularly well suited to the types of equa-

tions that arise in nonlocal cosmological perturbation theory. As an example to illustrate

our formalism we compute the leading corrections to the scalar field perturbations in p-adic

inflation and show explicitly that these are small on large scales.
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1. Introduction

Applications of infinite order differential equations to theoretical physics have attracted

considerable interest recently. Such equations are ubiquitous in string field theory [1]

(see [2] for a review) and also arise in a number of toy models of string theory such as

the p-adic string [3, 4] and discrete world-sheet models [5]. Moreover, such equations have

recently attracted interest from cosmologists due to a wide array of novel cosmological

behaviours [6]–[22]. Of particular interest are nonlocal inflationary models [23]–[27], such

as p-adic inflation, which can provide a unique playground for studying string cosmology in

an ultra-violet complete setting. Nonlocal inflation has the remarkable property that slow

roll inflation can proceed even when the potential is naively too steep and may therefore

offer a novel way to circumvent the difficulty of finding flat scalar field potentials in string
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theory. This remarkable behaviour was first observed in [23] and subsequently generalized

to a broader class of models in [26] (see also [24]). The perturbative analysis of [23]–[26]

was verified using fully nonlinear simulations in [27].

Perhaps the most interesting feature of nonlocal inflation is the possibility of generating

an observably large nongaussian contribution to the temperature anisotropies in the cosmic

microwave background. In [24] an estimate was provided for the nongaussianity in a wide

class of nonlocal models and this estimate was verified by a more quantitative calculation

in [25]. It is worth noting that the prediction of [24] is consistent with a subsequent

claimed detection of nongaussianity in [28]. The quantitative calculation of [25] was made

possible by a special gauge choice and by working to only to zeroth order in the ǫ slow

roll parameter, despite keeping up to first order in the η parameter. This is a consistent

approach for the models under consideration due to the hierarchy |η| ≫ ǫ, which is typical

in hill-top inflation models [29]. However, more generally one would like to be able to

study cosmological perturbations in nonlocal inflation without making such assumptions.

Progress in this direction is stymied by the fact that the nonlocal cosmological perturbation

theory equations are extremely difficult to solve. In [30] the theory of linear infinite order

equations with constant coefficients was developed.1 However, this theory relied on integral

transform methods which fail to be useful for the variable coefficient equations that arise

in cosmological perturbation theory.

To improve on the calculation of [25], then, clearly we require more sophisticated

analytical tools and a better understanding of the formal aspects of infinite order equations.

In this paper we make progress in this direction by developing the theory of a broad class

of infinite order variable coefficient equations. Our formalism is particularly well suited to

studying the kinds of equations that describe nonlocal cosmological perturbations. This

work is the first in a series of papers that aim to develop a general approach to nonlocal

cosmological perturbation theory. As an illustration of our method, we will compute the

leading corrections to the inflaton perturbations in p-adic inflation, showing explicitly that

these are small and do not lead to super-horizon evolution.

It is appropriate, before moving on, to mention the difficulties and complications that

arise when one wishes to interpret higher derivative theories as fundamental. Such theories

are often fraught with classical instabilities known as Ostrogradski instabilities [37] (see [38]

for a modern review), as emphasized in [39]. In this paper our primary interest is in devel-

oping the tools necessary to solve nonlocal equations of motion in a very general context

and we will not address the important question of when such theories can be phenomeno-

logically viable. See [22, 40] for examples of stable, interacting nonlocal theories. See [41]

for a discussion of the nonlinear stability of theories with infinitely many derivatives.

The organization of this paper is as follows. In section 2 we introduce the class of

equations under consideration and review previous results. In section 3 we consider the

simplest possible extension of the analysis of [30]. In section 4 we give a formal solution

of the class of equations under consideration which relies on knowledge of the inverse of

1See also [31]–[34] different approaches to the initial value problem, [35] for mathematical analysis of

p-adic and string field equations and [36] for more details on solving nonlocal equations.
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the nonlocal operator under consideration. In section 5 we give two different methods for

computing this inverse operator. In section 6 we apply our methods to p-adic inflation. Fi-

nally, in section 7 we conclude by discussing further possible applications of our formalism.

In appendices A and B we review the solutions for the inflationary background and scalar

field perturbations in p-adic inflation. In appendix C we discuss some technical manipula-

tions involving Bessel functions. In appendix D we discuss the non-self-adjointness of the

d’Alembertian in de Sitter space.

2. Infinite order equations with variable coefficients

In this paper we develop the theory of a particular class of linear infinite order partial

differential equations having variable coefficients. The class of equation under consideration

can be cast in the form

F (�)φ(t,x) = m2(t)φ(t,x) (2.1)

where � = gµν∇µ∇ν is the covariant d’Alembertian.2 Throughout we will assume that the

kinetic function F (z) (also called the generatrix in the mathematics literature) is entire.

With this assumption F (z) can be represented by a power series centered at z = 0 and

having infinite radius of convergence. Thus, we define the action of the pseudo-differential

operator F (�) on some smooth function φ by the series expansion

F (�)φ ≡
∞
∑

n=0

an�
nφ (2.2)

where the powers �
n are, of course, understood as composition of the operator � with

itself n times and the coefficients in the expansion are

an =
F (n)(0)

n!
(2.3)

Our restriction to analytic F (z) is merely for simplicity. We expect that it should be

straightforward to generalize our results to F (z) having isolated poles (such as the zeta

strings model [42]) or branch cuts (see [30] for mathematical analysis and [43] for cosmo-

logical applications).

The motivation to consider (2.1) comes from studying a general class of infinite or-

der equations

F (�)φ = V ′ [φ] (2.4)

which are typical in string field theory and also in cosmological models. Suppose one wishes

to solve (2.4) for small inhomogeneities δφ(t,x) about some known homogeneous solution

φ0(t). Plugging the ansatz

φ(t,x) = φ0(t) + δφ(t,x) (2.5)

into (2.4) and linearizing in δφ we obtain

F (�)δφ(t,x) = V ′′ [φ0(t)] δφ(t,x) (2.6)

which is precisely of the form (2.1) with m2(t) ≡ V ′′ [φ0(t)].

2Our choice of metric signature is such that gµν
≡ ηµν = diag(−1, +1, +1, +1) in flat space.
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Equations of the form (2.1) with m2 = const and gµν = ηµν were considered in our

previous work [30]. In that paper solutions were derived using the formal operator calculus

and we were able to exhaustively count the number of initial data necessary to uniquely

specify a solution. The formalism developed in [30] relied on the fact that in flat space

with m2 = const (2.1) is an infinite order equation with constant coefficients. However, in

many applications both gµν and m2 will depend nontrivially on space-time coordinates. In

this case the contour integral approach adopted in [30] is no longer applicable.

A physical example where an equation of the form (2.1) arises is the computation of

cosmological perturbations in nonlocal inflationary models. In the case of p-adic inflation

the dynamical equation for the scalar field is

p−�/(2m2
s)φ = φp (2.7)

For cosmological applications one should solve (2.7) in an FRW geometry

ds2 ≡ gµνdx
µdxν = −dt2 + a2(t)dxidx

i (2.8)

Slowly rolling background solutions φ0(t) have been constructed which source a quasi-de

Sitter expansion H ≡ ȧ/a ∼= const in [23]. Neglecting induced inhomogeneities of the

metric, the cosmological perturbations satisfy the equation
[

p−�/(2m2
s) − p

]

δφ(t,x) = p
[

φp−1
0 (t) − 1

]

δφ(t,x) (2.9)

which is precisely of the form (2.1) with

F (�) = p−�/(2m2
s) − p (2.10)

m2(t) = p
[

φp−1
0 (t) − 1

]

(2.11)

3. The case m2(t) = 0

Let us first consider the simplest possible extension of the results of [30] by assuming

that m2(t) ≡ 0 but allowing for gµν to be nontrivial.3 Let us assume that the function

F (z) has N zeroes, all of which are order unity (this is to be expected for physically

interesting operators).

To solve (2.1) we first provisionally assume that φ is a formal eigenfunction of �,

meaning that it is a non-trivial solution of the equation

�φ = −ω2φ (3.1)

Acting on φ with the full operator F (�) we have

F (�)φ =

∞
∑

n=0

an�
nφ

=
∞
∑

n=0

an(−ω2)nφ

= F (−ω2)φ

3This analysis applies equally well to m2(t) = const since any additive constant could be absorbed into

the definition of F (�).
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(The re-summation on the third line is justified for any value of ω because F (z) is entire.)

Hence the solutions of (3.1) will give rise to solutions of (2.1) provided the eigenvalue ω2

is chosen to satisfy the transcendental equation

F (−ω2) = 0 (3.2)

By assumption this equation has N distinct roots ω2
i (i = 1, · · · , N) and hence there are

N distinct solutions of (2.1). We assume that to each of these roots, there corresponds

a formal eigenfunction φi of the d’Alembertian.4 The most general solution of (2.1) is

obtained by superposing these eigenfunctions as

φ(t,x) =
N

∑

i=1

φi(t,x) (3.3)

Each φi is a solution of the second order equation �φi = −ω2
i φi and hence contains two

degrees of freedom.5 The full solution (3.3) then admits 2N initial data, two for each zero

of F (z). This is precisely the same result that was obtained for flat space in [30] where

a physical interpretation was provided in terms of the poles of the propagator. It should

be remarked that we are not making any completeness assumption on the set of formal

eigenfunctions. In fact, the construction being local, we need not even assume at this stage

that the wave operator � is essentially self-adjoint.

Let us briefly discuss the application of this approach to p-adic inflation. Consider

equation (2.9). During inflation φ0(t) ∼= 1 so that m2(t) ≪ 1 and (2.9) can be approxi-

mated by
[

p−�/(2m2
s) − p

]

δφ(t,x) ∼= 0 (3.4)

which is of the form under consideration. This equation is solved, as above, by taking

δφ(t,x) to be an eigenfunction of �. This is precisely the approach that was adopted

in [23] to study cosmological perturbations in p-adic inflation (and also in [24, 25] in a

more general context). In this paper we will to go beyond this approximation and show

how to systematically include the effect of having φ0(t) different from unity.

4. The method of successive substitution

Let us now develop the theory of equation (2.1) in the case where the time depen-

dence of m2(t) cannot be neglected.6 Let us suppose first that we are able to solve the

simpler equation

F (�)χ = 0 (4.1)

4There is of course a scaling ambiguity in the choice of φi. In the context of the cosmological applications

considered in this paper, the ambiguity will be resolved by considering solutions with prescribed asymptotics

at infinity and at the horizon (that is simply the usual Bunch-Davies procedure, see appendix B).
5By “degrees of freedom” here we refer to the freedom to specify two independent functions of the spatial

variables xi to specify the Cauchy data corresponding to a solution. This is equivalent to saying that, upon

quantization, each φi will have its own set of annihilation/creation operators.
6In fact, the approach of this section may fail in the case of constant m2(t).
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This falls into the class of equations considered in section 3 and the solutions are eigen-

functions of �. Denoting the N solutions of (4.1) by χi we have

�χi = −ω2
i χi (4.2)

F (−ω2
i ) = 0 (4.3)

for i = 1, · · · , N .

Next, consider the inhomogeneous equation

F (�)χ = J (4.4)

Let us suppose that we are able to solve this equation to obtain the particular solution

χpar.
7 Writing the particular solution as

χpar = GJ (4.5)

defines the operator G, which is the inverse of the kinetic function F (�). In the mathe-

matical literature G is often referred to as the resolvent generatrix.

We now demonstrate that knowledge of the solutions of (4.1) and of the inverse operator

G is sufficient to construct the full solutions of (2.1). Consider the infinite series

φi = χi

+G
[

m2χi

]

+G
[

m2G
[

m2χi

]]

+G
[

m2G
[

m2G
[

m2χi

]]]

+ · · · (4.6)

Plugging (4.6) into (2.1) and making use of the fact that F (�)χi = 0 and that G is the

inverse of F one can easily verify that φi affords a formal solution of (2.1). The most

general solution of (2.1) is obtained by superposing the modes φi as

φ(t,x) =
N

∑

i=1

φi(t,x) (4.7)

Hence we conclude that φ(t,x) contains the same number of degrees of freedom as χ(t,x).

That is, φ(t,x) admits two initial data for each zero of F (z).

The utility of the solution (4.6) lies in the observation that when m2(t) is a small

perturbation the series of successive iterations on the second line takes the form of an

expansion in powers of a small parameter.8 In this case the series (4.6) can be truncated

at some finite order to obtain an approximate expression for φi(t,x).

Notice that the definition of the quantities F (z) and m2(t) in (2.1) is ambiguous. The

form of this equation and also the expression for the solution (4.6) is unchanged under the

substitution F (z) → F (z) + A, m2(t) → m2(t) + A for any constant A. In applications,

we can take advantage of this ambiguity to define m2(t) in such a way that it is small and

the series (4.6) can safely be truncated at low order. Indeed, we have already implicitly

7We will discuss the solution of this equation in more detail in the next section.
8We will quantify what is meant by “small” on a case-by-case basis.
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done this in writing (2.9): by subtracting pδφ from both sides of the equation we have

defined F (�), m2(t) in such a way that m2(t) ≪ 1 during inflation. With this definition

the application of (4.6) to equation (2.9) has a nice physical interpretation. The solution

χi represent the pure de Sitter space modes constructed in [23] while the subsequent terms

in the series (2.9) represent the leading order corrections that arise due to the slow motion

of φ0(t) away from the unstable maximum φ = 1.

5. The inverse operator

In the last section we showed that (4.6) affords a formal solution of (2.1). This solution

is given in terms of the solutions of the simpler equation (4.1) and the inverse operator,

G. In section 3 we showed that the construction of the solutions of (4.1) is straightforward

once the eigenfunctions of � are known. Hence, the success of our method hinges on our

ability to construct the inverse operator G associated with F (�). In [30] we were able

to obtain exact expressions of the solutions of the inhomogeneous equation (4.4) for the

special case gµν = ηµν by using contour integral methods. However, generalizing these

results to curved backgrounds is a nontrivial task. Below we discuss two approaches to

computing the resolvent which will prove to be useful in applications. It is worth empha-

sizing that the methods developed here are applicable to a broad class of inhomogeneous

nonlocal equations.

5.1 Expansion of the source in eigenfunctions

Let us first consider the case where G acts on an eigenfunction of the d’Alembertian. Hence,

we wish to solve (4.4) when J satisfies

�J = m2
JJ (5.1)

If we assume that F (m2
J ) 6= 0 then (4.4) is trivially solved by

χpar =
1

F (m2
J)
J (5.2)

It follows that, when G acts on an eigenfunction of �, we have the simple expression

G(�) =
1

F (m2
J)

(5.3)

Suppose, now, that J is not an eigenfunction but it can be expanded into a sum of

eigenfunctions as

J =
∑

n

cnJn (5.4)

where the cn are constant and �Jn = m2
nJn. Note that we are not assuming that the Jn

form a complete set of eigenfunctions of �. All we require at this stage is that J should

be expressible as a series in a set of formal or true eigenfunctions of �, which should be

– 7 –
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differentiable term by term infinitely many times. Assuming that F (m2
n) 6= 0 for all n

we have

G [J ] =
∑

n

cn
F (m2

n)
Jn (5.5)

owing to the linearity of the resolvent G. We will see that the simple expression (5.5) will

allow us to compute the corrections to the inflaton perturbations in p-adic inflation.

Before moving on let us comment on the generality of this approach. The form (5.4)

is quite special and we are not, in general, guaranteed that an arbitrary source J(t,x) is

expansible in eigenfunctions of �. This is so because for nontrivial geometries the operator

� may fail to be self-adjoint when one imposes physically interesting boundary conditions

on the eigenfunctions. For example, in de Sitter space the d’Alembertian is not self-adjoint

when acting on a function space that includes Bunch-Davies normalized mode functions;

see appendix D. Of course, even when � is not self-adjoint it may still happen that some

particular physically interesting source term is expansible in eigenfunctions, which is the

case for p-adic inflation.

5.2 The method of infinite “differentiation”

As we have discussed, the case considered in the last subsection is rather special and an

expansion of J into eigenfunctions of � may not always be possible. Thus, it may be

interesting to develop another approach to computing the resolvent which applies more

generally. Here we develop an alternative formalism which is based on a modification of

the “method of infinite differentiation” employed by Davis [44]. The method developed in

this subsection will not actually be required for the explicit example we consider below and

is included for completeness.

The method of infinite “differentiation” will furnish us with an expression for G(�) as

an infinite series expansion in powers of �. The price for the generality of our construction

will be that the series cannot in general be summed to obtain a closed form expression for

G. For reasons that will become clear shortly we assume that F (0) 6= 0 (so that a0 6= 0).9

Now, let us proceed with the construction of the resolvent. Our aim is to solve the

inhomogeneous equation (4.4). To this end, consider the infinite series of equations formed

by operating on (4.4) with successively higher powers of the operator �. That is, consider

the series of equations

F (�)χ = J

�F (�)χ = �J

�
2F (�)χ = �

2J

· · ·

9This does not entail any loss of generality since if F (0) = 0 then we can redefine F (z) → A + F (z) and

m2
→ A + m2 (where A is any constant) without changing the form of (2.1).
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Writing F (z) in terms of the expansion (2.2) we then have the system of equations

a0χ + a1�χ + a2�
2χ + a3�

3χ + · · · = J

0 + a0�χ + a1�
2χ + a2�

3χ + · · · = �J

0 + 0 + a0�
2χ + a1�

3χ + · · · = �
2J

· · · · · · · · · · · · · · · = · · ·

(5.6)

One can now consider (5.6) as an infinite system of equations in infinitely many un-

knowns χ, �χ, �
2χ, · · · This system can be solved algebraically for the unknown χ. The

equations (5.6) can be considered as a matrix equation

AV = S (5.7)

where the matrix A is

A =















a0 a1 a2 a3 · · ·
0 a0 a1 a2 · · ·
0 0 a0 a1 · · ·
0 0 0 a0 · · ·
· · · · · · · · · · · · · · ·















(5.8)

while V is the vector of unknowns

V =















χ

�χ

�
2χ

�
3χ

· · ·















(5.9)

and the vector S is constructed from the source

S =















J

�J

�
2J

�
3J

· · ·















(5.10)

Notice that the matrix A is triangular (this is so because the coefficients an defined by (2.3)

are constants). This allows for a straightforward iterative inversion of (5.6). Let us now

illustrate how this works. As a first step we use the first line of (5.6) to solve for χ in terms

of J and �
nχ with n > 1:

χ =
1

a0

[

J − a1�χ− a2�
2χ+ · · ·

]

Next we use the second line of (5.6) to eliminate �χ in favour of �J and �
nχ with

n > 2, giving

χ =
1

a0

[

J − a1

a0
�J +

(

a2
1

a0
− a2

)

�
2χ+ · · ·

]

– 9 –
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Continuing in this matter we obtain an expression for φ solely in terms of �
nJ :

χ =
1

a0

[

J − a1

a0
�J +

1

a2
0

(a2
1 − a2a0)�

2J + · · ·
]

Writing χ = GJ we obtain a formal expression for the resolvent G(�) as a power

series expansion

G(�) =

∞
∑

n=0

bn�
n (5.11)

where the explicit expressions for the first few coefficients are

b0 =
1

a0
(5.12)

b1 = −a1

a2
0

(5.13)

b2 =
1

a3
0

(a2
1 − a0a2) (5.14)

b3 =
1

a4
0

(2a0a1a2 − a3
1 − a2

0a3) (5.15)

At the formal level, this procedure can be continued to arbitrarily high order in �
n. The

validity of the procedure will of course depend on the choice of source term J . This is in

principle a potential limitation of the method. In fact, there are instances in which the

expansion of χ in powers of �J fails to converge pointwise.

6. Application to p-adic inflation

6.1 Setting up the calculation

We now apply the formalism of sections 4 and 5 to study the dynamics of scalar field per-

turbations during p-adic inflation, equations (2.9)–(2.11). The homogeneous background

solutions φ0(t), H(t) were constructed in [23] and these result are reviewed in appendix

A. The solutions are written as a series expansion in powers of the small parameter u(t)

defined by

u(t) ≡ a(t)|η| = e|η|H0t ≪ 1 (6.1)

where

η = −2m2
s

3H2
0

(6.2)

is a slow roll parameter satisfying |η| ≪ 110 and H0 is the background Hubble scale (written

explicitly in terms of model parameters in appendix A). To leading order the quantity m2(t)

(defined explicitly in (2.11)) is given by

m2(t) ∼= −p(p− 1)u(t) (6.3)

10In p-adic inflation the spectral index is given by ns − 1 ∼= 2η. For the WMAP5-preferred value ns
∼=

0.96 [46] we have η ∼= −0.02. We will use this value in our examples below.
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Because m2 ∝ u it follows that the correction terms on the second line of (4.6) are controlled

by the smallness of u. If we work exclusively to leading order in u we need only consider

the first term on the second line of (4.6).

In what follows it will be simplest to work in terms of conformal time τ defined by

adτ = dt in terms of cosmic time t. To leading order we have a = eH0t = −1/(H0τ) so

that u(τ) = (−H0τ)
−|η|. To the same accuracy the d’Alembertian takes the form

� = H2
0

[

−τ2∂2
τ + 2τ∂τ + τ2~∇2

]

(6.4)

To proceed with the construction of the solution (4.6) we need two ingredients: the

functions χi defined by (4.1) and an expression for the inverse operator G, defined by (4.4).

Let us first discuss the solutions of (4.1). The relevant functions χi were derived in [23]

and these results are reviewed in appendix B. We consider only the tachyonic excitation

with effective mass −ω2
0 = −2m2

s and thus drop the subscript i on the solution. Expanding

χ in terms of annihilation/creation operators ak, a†
k

and c-number valued modes functions

χk we have

χ(t,x) =

∫

d3k

(2π)3/2

[

akχk(τ)e
ik·x + h.c.

]

(6.5)

where h.c. denotes the Hermitian conjugate of the preceding term. To leading order in u

and η the mode functions can be written as

χk(τ) =
H0

√
π

2k3/2
(−kτ)3/2H

(1)
3/2−η (−kτ) (6.6)

up to an irrelevant constant phase. For ease of notation we introduce the Fourier space

d’Alembertian operator �k defined by

�k = −H2
0

[

τ2∂2
τ − 2τ∂τ + (kτ)2

]

(6.7)

By construction the function (6.6) obeys the eigenvalue equation

�kχk(τ) = −2m2
s χk(τ) (6.8)

Our goal is now to compute the corrections coming from the second line of (4.6). To

leading order in u equation (4.6) takes the form

φk(τ) − χk(τ) ∼= G [Jk(τ)] (6.9)

where we have introduced the notation

Jk(τ) ≡ m2(τ)χk(τ)

= −p(p− 1)
H0

√
π

2k3/2

(

H0

k

)η

(−kτ)3/2+η H
(1)
3/2−η (−kτ) (6.10)

Obviously to proceed further we will need an expression for the inverse operator G. We

could proceed by expanding G as a power series in �, following (5.11), and then simply

computing �
n
kJk(τ) to high order in n. Unfortunately, this will turn out to give rather
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poor convergence properties for the resulting series (this observation does not imply that

G [Jk(τ)] is divergent, only that the approach of subsection 5.2 is not ideal for this particular

problem). The failure of the formalism from subsection 5.2 in this physically interesting

case is disappointing, however, the simple trick discussed in subsection 5.1 will be quite

sufficient for our purposes.

6.2 The large scale limit

As a warm-up exercise we first consider the limit −kτ → 0 which is relevant for cosmological

observations. In this limit the “source” term Jk(τ) given by eq. (6.10) obeys the eigenvalue

equation

�kJk(τ) ∼= −4m2
s

(

1 +
2|η|
3

)

Jk(τ) (6.11)

To prove this notice that in the limit −kτ → 0 the function χ becomes (see appendix B

for more details)

χk(τ) →
H0√
2k3

(−kτ)η (6.12)

so that, from (6.10), we have

Jk(τ) → −p(p− 1)
H0√
2k3

(kH0)
η (−τ)2η (6.13)

Now, notice that the operator �k → −H2
0 (τ2∂2

τ − 2τ∂τ ) in the same limit. Acting with

this operator on (6.13) we have �kJk(τ) = −6|η|H2
0 (1 + 2|η|/3)Jk(τ). Using the definition

of the slow roll parameter, η = −2m2
s/(3H

2
0 ), we trivially recover the result (6.11).

Given the result (6.11) and the method of subsection 5.1 it is easy to compute the

correction term on the right-hand-side of (6.9):

G [Jk(τ)] ∼=
1

F
[

−4m2
s

(

1 + 2|η|
3

)]Jk(τ) =
1

p2(1+2|η|/3) − p
Jk(τ) (6.14)

(See equation 5.3.) Thus, we conclude that the solutions of (2.9) take the form

φk(τ) ∼= χk(τ)

[

1 − (p − 1)

p1+4|η|/3 − 1
u(τ) + O(u2(τ))

]

(6.15)

in the limit −kτ → 0. We see that on large scales and to leading order in u the slow motion

of φ0 yields a tiny almost-constant correction to the solutions obtained in [23]. Significantly,

we see that slow motion of the background does not lead to any super-horizon evolution

for the inflaton perturbations (at least at the linearized level and to first order in u), as

one would expect in the absence of entropy perturbations [47].

6.3 Corrections to the p-adic mode functions

Now we compute the right-hand-side of (6.9) without taking the large-scale limit. To do

so, we first decompose the “source” term Jk(τ) — eq. (6.10) — into a discrete sum of
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eigenfunctions of �k.
11 The technical details are discussed in appendix C. The result is

(see equation (C.8))

Jk(τ) = −p(p− 1)

(

H0

k

)η
[

∞
∑

n=0

α(1)
n

H0
√
π

2k3/2
(−kτ)3/2J3/2+2n(−kτ)

+
∞

∑

n=0

α(2)
n

H0
√
π

2k3/2
(−kτ)3/2J−3/2+2η+2n(−kτ)

]

(6.16)

where the coefficients α
(i)
n depend only on η and are explicitly defined by (C.9), (C.10).

Each member of the sum (6.16) is an eigenfunction of �k, as can be seen explicitly from

equation (C.3). To compute the right-hand-side of (6.9) we use formula (5.5). The result

is again a sum of the form (6.16), only the coefficients have changed:

G [Jk(τ)] = −p(p− 1)

(

H0

k

)η
[

∞
∑

n=0

β(1)
n

H0
√
π

2k3/2
(−kτ)3/2J3/2+2n(−kτ) (6.17)

+

∞
∑

n=0

β(2)
n

H0
√
π

2k3/2
(−kτ)3/2J−3/2+2η+2n(−kτ)

]

(See appendix C for more details.) The coefficients β
(1)
n , β

(2)
n in the expansion (6.17) are

defined explicitly in (C.18), (C.19).

We now plug the result (6.17) into (6.9) and cast the leading order mode functions in

the form

φk(τ) = χk(τ) [1 + u(τ)∆(−kτ)] (6.18)

In (6.18) we have defined the function ∆(−kτ) ≡ G [Jk(τ)] / [u(τ)χk(τ)] which represents

the coefficient of the O(u) contribution to fractional difference between φk(τ) and χk(τ). In

figure 1 we plot the modulus |∆(x)| on large scales x < 1. For illustration we take η = −0.02

and p = 5. In this figure we have retained up to n = 25 in the summation (6.17), however,

keeping only up to n = 1 the curve would have been almost indistinguishable. We have

verified both analytically and numerically that

lim
x→0

∆(x) = − p− 1

p1+4|η|/3 − 1
(6.19)

in agreement with (6.15).

In figure 2 we plot |∆(x)| for a larger range of x in order to show the large scale

behavior of the correction. Again we take η = −0.02 and p = 5 for illustration. Here we

see that at large x the function ∆(x) undergoes oscillations of amplitude p. Notice that

even though u≪ 1 it may still happen that up = O(1) before the end of inflation, provided

p is sufficiently large. In that case our result (6.18) for φk(τ) cases to be reliable on very

small scales because higher order terms (such as the second and third terms on the second

line of (4.6)) become important. This should not be taken as evidence that φk(τ) differs

11As mentioned previously and discussed in appendix D, such an expansion is not, in general, possible.

Our success here relies on the particular form of the source term defined by (6.10).
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Figure 1: |∆(x)| versus x on small scales

x = −kτ < 1. Parameters were chosen as

η = −0.02, p = 5 for illustration.

Figure 2: |∆(x)| versus x, showing large

scale behaviour. Parameters were chosen as

η = −0.02, p = 5 for illustration.

significantly from χk(τ) on small scales when p ≫ 1. It is easy to see that this is not so.

For time intervals ∆t ≪ H−1
0 one can treat u(t) as a constant. Denoting this constant

value by uc we see from (2.9) that φ obeys the equation

[F (�k) + p(p− 1)uc]φk(τ) = 0

The solutions φk(τ) are given by eigenfunctions of �k where the eigenvalues are given

by the zeroes of F (−ω2) + p(p − 1)uc. Recall that χk(τ) is an eigenfunction of �k with

eigenvalue given by the zeroes of F (−ω2). We conclude that on small scales the solutions

φk(τ) of (2.9) differs from χk(τ) only by a tiny correction to the effective mass.

7. Conclusions and future directions

In this paper we have developed the theory of a class of variable coefficient equations of

infinite order which arise when studying perturbations about a time-dependent background.

We have shown that solutions can be efficiently computed in terms of the eigenfunctions

of the d’Alembertian and the inverse operator associated with the kinetic function F (�).

We have illustrated our method for the case of p-adic inflation by computing the leading

order corrections to the inflaton perturbations derived in [23]. We have shown explicitly

that these are small and do not lead to any super-horizon evolution.

It is worth emphasizing that many of the techniques which we have developed here

- in particular the method of successive substitution in section 4 and the construction of

the nonlocal Green function in section 5 - are quite general. We believe that even ignoring

the main themes of this paper such techniques constitute a valuable contribution to the

understanding of infinite order differential equations.
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We conclude by discussing some further possible applications of our formalism. One

motivation for this work was to develop the tools necessary for a fully rigorous and system-

atic approach to nonlocal cosmological perturbation theory. In the most general scenario

the solution of the perturbed scalar field equation will proceed very much analogously to the

calculation in section 6, only the de Sitter space d’Alembertian is replaced by a perturbed

d’Alembertian which includes also metric inhomogeneities. This replacement significantly

complicates the construction of the eigenfunctions and also of the resolvent generatrix.

However, no new conceptual obstacle is involved since our formalism does not make any

specific assumptions about the detailed form of the metric. The correlation functions of

the curvature perturbation may then be computed using the Seery et al. formalism for

working directly with the field equations [48].

Of course, the applications of our formalism are not limited to nonlocal inflation.

This approach could also be used to study perturbations about rolling tachyon solutions

in string field theory, such as the Hellerman and Schnabl [49] solution. We expect also

that our approach could be straightforwardly generalized to study nonlocal dynamics in

theories where F (z) has poles or branch cuts. Yet another potential application of our

method is to the construction of more general nonlocal inflationary background solutions,

for example large field inflation models which might give rise to observable gravitational

wave signatures. We intend to return to these applications in future work.
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A. Review of p-adic inflation background solutions

In this appendix we review the slowly rolling solutions obtained in [23] for p-adic inflation.

Consider p-adic string theory coupled to Einstein-Hilbert gravity:

S =

∫

d4x
√−g

[

M2
p

2
R+ Lp

]

(A.1)

where

Lp =
m4

s

g2
p

[

−1

2
φp−�/(2m2

s)φ+
1

p+ 1
φp+1

]

(A.2)

In (A.2) ms = (α′)−1/2 is the string mass and we have defined

g2
p = g2

s

p− 1

p2
(A.3)

with gs the open string coupling constant. The Lagrangian (A.2) is derived for p a prime

number, however, the theory can analytically continued to any integer value.
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In [23] inflationary solutions φ0(t), a(t) of the theory (A.1) we constructed by employing

an expansion in powers of u ≡ eλt

φ0(t) = 1 −
∞

∑

r=1

φre
rλt (A.4)

H(t) = H0 −
∞
∑

r=1

Hre
rλt (A.5)

where, of course, H = ȧ/a = ∂ta/a. We have chosen the parametrization of the solutions

such that at t→ −∞ the field φ starts from the unstable maximum of its potential, φ = 1,

and the universe undergoes a de Sitter expansion with Hubble constant H0. As t increases,

the corrections terms erλt become more important and the field rolls towards the true

vacuum φ = 0. The origin of time is chosen arbitrarily which, of course, has no impact on

any physical observable.

The solutions obtained in [23], up to order e2λt, are

φ0
∼= 1 − e|η|H0t +

1

2

p− 1

p1+2|η|/3 − 1
e2|η|H0t (A.6)

H ∼= H0

[

1 − p ln p

2

p+ 1

p− 1
e2|η|H0t

]

(A.7)

In writing (A.6)–(A.7) we have defined the background Hubble scale

H2
0 =

m4
s

6M2
p

p− 1

g2
p(p+ 1)

(A.8)

and the slow roll parameter

η = −2m2
s

3H2
0

(A.9)

which satisfies |η| ≪ 1. Notice that the small parameter u(t) can be written in terms of

the scale factor a(t) as

u(t) = e|η|H0t = a(t)|η| (A.10)

To leading order in u we can consistently treat the background expansion as pure

de Sitter space while still working to nontrivial order in the η slow roll parameter. The

consistency of this approach is due to the fact that there is a large hierarchy between the

η slow roll parameter (eq. (A.9)) which controls the size of the inflaton (effective) mass

and the ǫ parameter (ǫ = −Ḣ/H2) which controls the departures of the geometry from de

Sitter. In the same approximation we can write the quantity m2(t) (2.11) for the p-adic

perturbation equation (2.9) as

m2(t) ∼= −p(p− 1)u(t) = −p(p− 1)e|η|H0t (A.11)
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B. Construction of χ for p-adic inflation

In this appendix we consider the solutions of equation (4.1) for the case of p-adic infla-

tion. In this case the kinetic function is given by (2.10) and hence the equation under

consideration is
[

p−�/(2m2
s) − p

]

χ = 0 (B.1)

This equation belongs to the class considered in section 3. The solutions χn of (B.1) are

eigenfunctions of �

�χn = −ω2
nχn (B.2)

The eigenvalues solve the transcendental equation F (−ω2
n) = 0 and are given explicitly

by [30]

ω2
n =

[

2 ± 4πin

ln p

]

m2
s (B.3)

with n = 0, 1, · · · The n = 0 mode is the usual tachyon with effective mass −ω2 = −2m2
s.

The infinity of n > 0 states have complex mass-squared and are ghost-like (contributing

negative kinetic energy to the Hamiltonian); see [27, 11] and [50]. These states are, pre-

sumably, artifacts that would not be present in the full string theory. Here we simply omit

the ghost modes and focus our attention on the tachyon. Since we only consider n = 0 we

will drop the subscript n on the eigenfunctions.

The n = 0 solution of (B.2) in a de Sitter geometry is well known

χ(t,x) =

∫

d3k

(2π)3/2

[

ake
ik·xχk(t) + h.c.

]

(B.4)

χk(t) =
eiδ

2

√

π

a3H0
H(1)

ν

(

k

aH0

)

(B.5)

where ak, a
†
k are annihilation/creation operators, χk are c-number valued mode functions,

h.c. denotes the Hermitian conjugate of the preceding term and a = eH0t is the scale factor.

In (B.5) the real-valued constant δ is an irrelevant phase the order of the Hankel functions is

ν =

√

9

4
+
ω2

0

H2
0

∼= 3

2
− η + O(η2) (B.6)

to leading order in the η slow roll parameter.

It is convenient to introduce conformal time τ related to cosmic time t as adτ = dt.

In terms of conformal time the scale factor is

a(τ) = − 1

H0τ
(B.7)

so that τ runs from −∞ to 0 as a goes from 0 to +∞. Notice that k/(aH0) = −kτ . The

small parameter u in (A.10) can be written as

u(τ) = (−H0τ)
−|η| (B.8)
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Small (sub-horizon) scales corresponds to −kτ ≫ 1. By construction, the solu-

tions (B.5) have the following small scale asymptotics

χk → 1

a

e−ikτ

√
2k

for − kτ → ∞ (B.9)

This normalization corresponds to the usual Bunch-Davies vacuum choice. Large (super-

horizon) scales corresponds to −kτ ≪ 1. The solutions (B.5) have the following large

scale asymptotics

χk → H0√
2k3

(−kτ)η for − kτ → 0 (B.10)

The factor k−3/2 corresponds to the exactly scale invariant part while the factor (−kτ)η
give the slight departure from scale invariance with spectral index ns = 1 + 2η.

C. Eigenfunction decomposition of Jk(τ )

In this appendix we would like to show that the quantity Jk(τ), defined by

Jk(x) = Ak(−kτ)3/2+ηH
(1)
3/2−η(−kτ) (C.1)

where

Ak = −p(p− 1)
H0

√
π

2k3/2

(

H0

k

)η

(C.2)

(see eq. (6.10)) can be expanded into a discrete sum of eigenfunctions of the operator �k

in de Sitter space, defined by (6.7).

Before proceeding, let us briefly review some facts about the eigenfunctions of �k. It

is straightforward to verify the identity

�k

[

(−kτ)3/2Cα(−kτ)
]

=

(

9

4
− α2

)

H2
0

[

(−kτ)3/2Cα(−kτ)
]

(C.3)

which is valid for Cα any solution of Bessel’s equation with order α. In particular, equa-

tion (C.3) is valid for Cα = H
(1)
α ,H

(2)
α , Jα, Yα (or any linear combination thereof).

As a first step to decompose Jk(τ) into a sum of eigenfunctions of �k, then, we should

write xηH
(1)
3/2−η(x) as sum of terms of the form Cα(x) (here we have denoted x ≡ −kτ).

To this end we write the Hankel function in terms of Bessel functions of the first kind as

xηH
(1)
3/2−η(x) = xη

[

J3/2−η(x) + iY3/2−η(x)
]

= (1 + i cot [(3/2 − η)π]) xηJ3/2−η(x)

− i

sin [(3/2 − η)π]
xηJ−3/2+η(x) (C.4)

(this follows from the definitions of H
(1)
ν and Yν). Next, we employ the identity

(x

2

)µ−ν
Jν(x) =

∞
∑

n=0

c(n;µ, ν)Jµ+2n(x) (C.5)

c(n;µ, ν) ≡ µ+ 2n

n!

Γ(µ+ n)Γ(ν − µ+ 1)

Γ(ν − µ+ 1 − n)Γ(ν + 1 + n)
(C.6)
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which is derived on page 139 of [45]. Using (C.5) we can we-write the quantities xηJ3/2−η(x)

and xηJ−3/2+η(x) appearing on the second and third lines of (C.4) in terms of Bessel

functions of the first kind. The result is:

x3/2+ηH
(1)
3/2−η(x) = 2η [1 + i cot [(3/2 − η)π]]

∞
∑

n=0

c(n; 3/2, 3/2 − η)x3/2J3/2+2n(x) (C.7)

− 2η i

sin [(3/2−η) π]

∞
∑

n=0

c(n;−3/2+2η,−3/2+η)x3/2J−3/2+2η+2n(x)

Using the identity (C.7) we can finally decompose (C.1) into a sum of eigenfunctions of �k

as follows:

Jk(τ) = −p(p− 1)

(

H0

k

)η
[

∞
∑

n=0

α(1)
n

H0
√
π

2k3/2
(−kτ)3/2J3/2+2n(−kτ)

+
∞

∑

n=0

α(2)
n

H0
√
π

2k3/2
(−kτ)3/2J−3/2+2η+2n(−kτ)

]

(C.8)

where the coefficients α
(i)
n depend only on η:

α(1)
n = 2η (1 + i cot [(3/2 − η) π]) c(n; 3/2, 3/2 − η) (C.9)

α(2)
n =

−2η i

sin [(3/2 − η) π]
c(n;−3/2 + 2η,−3/2 + η) (C.10)

Equation (C.8) is the main result of this appendix. The terms in the summation (6.16)

should be compared to the de Sitter modes (6.6). This shows that each term in the expan-

sion (C.8) behaves very much like the mode function for a massive field in de Sitter space.

If we introduce the notation

ψ(1)
n =

H0
√
π

2k3/2
(−kτ)3/2J3/2+2n(−kτ) (C.11)

ψ(2)
n =

H0
√
π

2k3/2
(−kτ)3/2J−3/2+2η+2n(−kτ) (C.12)

for the eigenfunctions appearing in the summation (C.8) then, from (C.3), we have the

identities

�kψ
(1)
n =

[

−4n2 − 6n
]

H2
0 ψ

(1)
n (C.13)

�kψ
(2)
n =

[

−4(n + η)2 + 6(n+ η)
]

H2
0 ψ

(2)
n (C.14)

Using equation (5.3) we can easily compute G
[

ψ
(i)
k (τ)

]

. We find

G
[

ψ(1)
n

]

=
1

F
[

(−4n2 − 6n)H2
0

] ψ(1)
n (C.15)

G
[

ψ(2)
n

]

=
1

F
[

(−4(n+ η)2 + 6(n+ η))H2
0

] ψ(2)
n (C.16)

– 19 –



J
H
E
P
1
2
(
2
0
0
8
)
0
2
2

where F (z) is defined by (2.10). Since the resolvent G is linear we have

G [Jk(τ)] = −p(p− 1)

(

H0

k

)η
[

∞
∑

n=0

β(1)
n

H0
√
π

2k3/2
(−kτ)3/2J3/2+2n(−kτ) (C.17)

+
∞

∑

n=0

β(2)
n

H0
√
π

2k3/2
(−kτ)3/2J−3/2+2η+2n(−kτ)

]

where the coefficients are

β(1)
n =

α
(1)
n

p
2

3|η|
[2n2+3n] − p

(C.18)

β(2)
n =

α
(2)
n

p
1

3|η|
[2(n+η)2−3(n+η)] − p

(C.19)

In deriving (C.18), (C.19) we have used the fact that η = −2m2
s/(3H

2
0 ).

D. On the non-self-adjointness of the d’Alembertian

In this appendix we review some basic facts about Sturm-Liouville theory to demonstrate

that the operator � fails to be self-adjoint in a de Sitter geometry when the function

space contains the standard Bunch-Davies mode functions. We are interested in the eigen-

value equation

�vm(τ,x) = m2vm(τ,x) (D.1)

In a de Sitter geometry where � is given by (6.4). The equation for the Fourier modes can

be cast in the standard Sturm-Liouville form as

L [vk,m(τ)] +m2a4(τ) vk,m(τ) = 0 (D.2)

where the Sturm-Liouville operator is

L ≡ ∂τ

[

a2(τ)∂τ

]

+ k2a2(τ) (D.3)

the eigenvalue is λ = m2 and the weight is a4(τ) (with a(τ) = −1/(H0τ)).

Although (D.3) is in Sturm-Liouville form, it may fail to be self-adjoint if we impose

physically interesting boundary conditions on the eigenfunctions. To see explicitly how this

failure occurs, let us suppose that our function space contains the functions fk(τ), gk(τ)

defined by:

fk(τ) =
H0

√
π

2k3/2
(−kτ)3/2H(1)

νf
(−kτ) (D.4)

gk(τ) =
H0

√
π

2k3/2
(−kτ)3/2H(1)

νg
(−kτ) (D.5)

where

νf =

√

9

4
−
m2

f

H2
0

, νg =

√

9

4
−
m2

g

H2
0

(D.6)
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The functions fk(τ), gk(τ) correspond to de Sitter space mode functions normalized ac-

cording to the Bunch-Davies prescription. For simplicity we assume that 0 < mf ,mg < H,

however, our analysis does not rely on this assumption in any crucial way.

Working on the interval τ ∈ (τ1, τ2) the standard theory gives the identity
∫ τ2

τ1

dτf⋆
k (τ)L [gk(τ)] −

∫ τ2

τ1

dτgk(τ)L [fk(τ)
⋆]

=
[

a2(τ) (fk(τ)
⋆∂τgk(τ) − gk(τ)∂τf

⋆
k (τ))

]τ2
τ=τ1

(D.7)

Let us now show explicitly that term on the second line of (D.7) does not vanish when

one takes the physically sensible endpoints τ1 = −∞, τ2 = 0. Using the known large-

and small-scale asymptotics of the de Sitter space mode functions (see appendix B) it is

straightforward to show that

[

a2(τ) (f⋆
k (τ)∂τgk(τ) − gk(τ)∂τf

⋆
k (τ))

]

→ −i (D.8)

in the limit τ → −∞. On the other hand, we have

[

a2(τ) (fk(τ)
⋆∂τgk(τ) − gk(τ)∂τf

⋆
k (τ))

]

→ (νg − νf )

2
(−kτ)−νf−νg (D.9)

in the limit −τ → 0. Clearly (D.8) does not equal (D.9) and this completes our proof that

L is not self-adjoint.

It is a simple exercise to see that, because
∫ 0

−∞
dτf⋆

k (τ)L [gk(τ)] 6=
∫ 0

−∞
dτgk(τ)L [f⋆

k (τ)]

the usual theorems about orthogonality and completeness of the eigenfunctions vk,m(τ)

on the interval −∞ < τ < 0 do not hold. Hence, there is no reason to expect that a

general source Jk(τ) in the function space will be expansible in a series of eigenfunctions.

Of course, this analysis does not rule out the possibility that some physically interesting

source terms, such as (6.10), may happen to be so expansible (see appendix C). However,

this is a special property of the particular source defined by (6.10), rather than a generic

property of the eigenfunctions of � in de Sitter space.

Note that physically the failure of L to be self-adjoint is easy to understand. It occurs

because the mode functions have very different behaviour on large scale as compared to the

small scale asymptotics. Hence we expect similar behaviour in general FRW space-times.

It is interesting - if tangential to our main line of inquiry - to consider more carefully

the reason that � is not self-adjoint in de Sitter space. The choice of Bunch-Davies mode

functions is closely tied to the choice of conformal coordinates defined by

ds2 = a2(τ)
[

−dτ2 + dxidx
i
]

(D.10)

with −∞ < τ < 0 and a(τ) = −1/(H0τ). But it is well-known that these coordinates do

not cover the whole de Sitter space-time [51]. Let us reconsider this exercise using global

coordinates [51] defined by

ds2 = −dt̃2 + 4cosh2(t̃)dxidxi (D.11)
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Taking −∞ < t̃ < +∞ these coordinates cover the full de Sitter space-time. One could

reconsider the solutions of the eigenvalue equation �vm = m2vm in this coordinate system,

however, this effort is not necessary. In the asymptotic regions t̃→ ±∞ the metric (D.11)

corresponds to a FRW universe with scale factor a(t̃) ∼ e±H0t̃. Hence, we can normalize

the eigenfunctions such that

vk,m(t̃) ∼ eiδ

2

√

π

a3H0
H(1)

ν

(

k

aH0

)

(D.12)

asymptotically as t̃ → ±∞ (see eq. (B.5)). Due to the symmetry under t̃ → −t̃ we have

same kind of behaviour for the modes in each asymptotic region (that is freeze-out). Now

there is no inconsistency with imposing periodic boundary conditions on the eigenfunctions

at t̃1 = −T and t̃2 = +T . These boundary conditions render � self-adjoint and one can

send T → ∞ at the end of the calculation.

However, the possibility of using (D.11) (or, indeed, any global covering) to render

� self-adjoint is quite irrelevant for our purposes. Certainly the use of global coordinates

is inappropriate for the physical problem at hand. First off, the covering (D.11) contains

an unphysical contracting region for t̃ < 0. Moreover, we are not actually interested in

real de Sitter space-time but rather inflationary spaces that merely mimic de Sitter for

some number of e-foldings. Hence, for the physically reasonable choice of coordinates and

vacuum the non-self-adjointness of � is simply something we need to live with.

The reader who still finds the non-self-adjointness of � disturbing may wish to consider

an analogy. Using the standard Minkowski coordinates ds2 = −dt2 + dxidx
i one has, in

Fourier space, oscillatory eigenfunctions e−iωt. We can ensure that � is self-adjoint by

imposing periodic boundary conditions at ±T and sending T → ∞ at the end of the

calculation. But now consider the same exercise using Milne coordinates. The Milne

universe looks like an expanding FRW space-time with scale factor that grows linearly in

cosmic time, however, it is quite equivalent to ordinary flat Minkowski space-time after a

coordinate transformation. In conformal coordinates the Milne metric takes the form

ds2 = a2(τ)
[

−dτ2 + dr2 + sinh2 r
(

dθ2 + sin2 θdφ2
)]

(D.13)

with −∞ < τ <∞ and a(τ) = eτ . These coordinates do not cover the full space-time but

only the patch t2 − xix
i > 0. The analogue of the Bunch-Davies modes (D.4), (D.5) are

solutions of the form

fλ(τ) =

√

π

2

1
√

sinh(πλ)
J−iλ (mfe

τ ) (D.14)

gλ(τ) =

√

π

2

1
√

sinh(πλ)
J−iλ (mge

τ ) (D.15)

corresponding to the conformal vacuum [52]. (Here the real number λ is the eigenvalue of

the spatial Laplacian and plays the role of k in the de Sitter modes (D.4), (D.5).) The

modes (D.14), (D.15) behave very differently near the endpoints τ = ±∞ and we encounter

the same difficulty that we had in the de Sitter case. The boundary conditions implied by

the conformal vacuum are inconsistent with the self-adjointness of the d’Alembertian in

Minkowski space.
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